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Abstract. In recent years we have found that logistic systems of the Generalized Lotka-Volterra type (GLV)
describing statistical systems of auto-catalytic elements posses power law distributions of the Pareto-Zipf
type. In particular, when applied to economic systems, GLV leads to power laws in the relative individual
wealth distribution and in market returns. These power laws and their exponent α are invariant to arbitrary
variations in the total wealth of the system and to other endogenously and exogenously induced variations.

PACS. 87.23.-n Ecology and evolution – 89.75.Da Systems obeying scaling laws – 89.65.Gh Economics,
business, and financial markets

1 Logistic equations, GLV and power laws

The logistic equation (1)

dw/dt = Aw − Bw2 (1)

has been used for more than 100 years to describe
various biological, demographic and economic systems.
Montroll [2] claims that “almost all the social phenom-
ena, except in their relatively brief abnormal times obey
the logistic growth”. Lotka [3] and Volterra [4] interpreted
w as the size of an animal/plant population, Aw as the
aggregated effects of birth and natural death, and −Bw2

as the effects of the competition for limited resources.
In economics, Aoki [5] interpreted w as the total prod-

uct demand in a market. The linear term Aw models the
emergence of new products that are proportional to the
present size of the market. The nonlinear term −Bw2 ex-
presses the fact that the products have to compete with
one another within a finite total potential market.

Solomon and Levy [6] have suggested that w can rep-
resent the total capital within a financial system. In this
interpretation, the first term represents the average re-
turns that the system offers, while the term −Bw2 repre-
sents the effects of competition and other growth limiting
factors.

An apparently universal (and until recently un-related)
property, spanning a wide range of disciplines from lin-
guistics to economics and to biology is the presence of
scale-invariant probability distributions [7]. This property
was initially observed by Pareto [8] more than 100 years
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ago in the individual wealth distribution: for each econ-
omy, the fraction P (w) of people owning a wealth w is
proportional to a power of w:

P (w) ∼ w−1−α. (2)

The presence of Pareto power laws equation (2) in dy-
namical systems with random multiplicative dynamics has
been known experimentally for many years. It occurs in a
variety of fields: the frequency of words in texts [9], eco-
nomic growth [10], cities populations [11], wealth distri-
bution [12], renewal stochastic processes [13], “1/f noise”
phenomena in engineering [14] and physiology [15] etc.

It was shown [6,16] that systems of the type equa-
tion (1), when studied at the level of microscopic agents
rather than in the aggregate form equation (1), lead to
power law distributions of the form equation (2). These
Generalized Lotka-Volterra (GLV) systems [17,18] treat
each component of the system individually while taking
into account their non-linear interactions. GLV explains
not only the ubiquitous emergence of the power laws in
many fields but also their stability in generic systems
with non-stationary dynamics and arbitrarily varying to-
tal size [19,20]. In particular, GLV explains measured val-
ues of the exponent of the Pareto wealth distribution in
terms of the social and biological constraints on the econ-
omy [21].

One can therefore say that the careful reconsideration
of the system equation (1) has led to the solution of a
puzzle that is over 100 years old by an equation that is
also over 100 years old.

In the next section we introduce the GLV model and
its various interpretations. In Section 3 we show how GLV
reduces to a set of decoupled stationary linear stochastic
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differential equations with constant coefficients. In Sec-
tion 4 we derive analytically the Pareto law for the relative
wealth distribution in the GLV model.

2 Definition and interpretation of GLV

We describe the dynamics of the GLV system in the dis-
crete time formulation to avoid ambiguities related to the
continuum (Ito vs. Stratonovich) formulation. The time
evolution of the system from time t to time t + τ is given
by the recursive equation [6,17–19]:

wi(t + τ) − wi(t) = ri(t)wi(t) + aw(t) − c(w., t)wi(t) (3)

where
• w(t) is the average 〈wi(t)〉 over all i’s at time t.
• the functions a and c(w., t) are of order τ in order to

insure a meaningful “continuum limit” τ → 0.
• the notation c(w., t), means that c(w1, w2, ..., wN , t)

can depend in an arbitrary (un-symmetric, time depen-
dent, way) on each of the wj(t)’s.

• ri(t)’s are random numbers (of order unity) dis-
tributed with the same probability distribution (indepen-
dent of i) with a square standard deviation D of order τ

〈ri(t)2〉 = D. (4)

• One can absorb the average 〈ri(t)〉 into the arbitrary
function c(w., t) and assume without loss in generality

〈ri(t)〉 = 0. (5)

The system equation (3) admits a few practical interpre-
tations.

If one considers wi(t) as the individual wealth of the
agent i, then:

• the random multiplicative factor ri(t) represents the
random part of the returns that its capital wi(t) produces
during the time between t and t + τ .

• The coefficient a expresses the auto-catalytic prop-
erty of wealth at the social level, i.e. it represents the
wealth that individuals receive as members of the society
in subsidies, services and social benefits. This is the rea-
son it is proportional to the average wealth. This term
prevents, as we shall show, the individual wealth falling
below a certain minimum fraction of the average. The ex-
act mechanism by which this happens (subsidies, minimal
insurance or wage, elimination of the weak and their sub-
stitution by the more fit) is not, at this level of description,
important.

• The coefficient c(w., t) controls the overall growth of
the wealth in the system. It represents external limiting
factors: finite amount of resources and money in the econ-
omy, technological inventions, wars, disasters etc. It also
includes internal market effects: competition between in-
vestors, adverse influence of bids on prices (such as when
large investors sell assets to realize their profits and cause
thereby prices/ profits to fall). This term has the effect
of limiting the growth of w(t) to values sustainable for
current conditions and resources.

c(w., t) parametrizes the general state of the economy.
Time periods during which −c(w., t) is large and positive
correspond to boom periods during which the wealth is
on average increasing. Periods during which −c(w., t) is
negative correspond to recessions, when typically the in-
vestments lead to negative or small returns. The surprising
fact (proven in Sect. 4) is that as long as the term c(w., t)
and the distribution of the ri(t)’s are common for all the
i’s, the Pareto power law equation (2) holds and its expo-
nent is independent on c(w., t). This an important finding
since the i-independence corresponds to the famous mar-
ket efficiency property in financial markets.

A different interpretation of GLV equation (3) may
consider the market as a set of companies i = 1, ....., N
whose shares are traded at variable prices wi(t). The price
of each stock wi(t) is proportional to the capitalization of
the corresponding company i ( the total wealth of all the
market shares of the company). In this case,

• ri(t) represents fluctuations in the market worth of
the company. For a fixed total number of market shares,
ri(t) also measures relative changes in individual share
prices. These changes are typically fractions of the nominal
share price (measured in percents or in points).

• aw represents correlation between the worth of each
company wi and the market index w(t).

• The non-linear term, which in this interpretation
has usually the particular form −c(t)w(t)wi(t) represents
competition between the companies for finite amounts of
money in the market (and limits their worth). Time varia-
tions in global resources may lead to lower or higher values
of c(t). These in turn lead to increases or decreases in the
total (or average) wealth w(t).

Yet another interpretation of the GLV equation (3) is
in the context of the investors herding behavior:

• wi(t) is the number of traders adopting a similar
investment policy or position (they comprise “herd” i).

• one assumes that the sizes of these sets vary auto-
catalytically according to the random factor ri(t). This
can be justified by the fact that the visibility and social
connections of a herd are proportional to its size.

• aw represents the diffusion of traders between the
herds.

• The nonlinear term c(w., t) represents the general
status of popularity of the stock market as a whole. This
term also includes the competition between various herds
in attracting individual traders as members.

3 Reducing GLV to simple stochastic
differential equations

Many properties of the GLV nonlinear system of coupled
differential equations with time-dependent (and variable-
dependent) coefficients equation (3) can be studied analyt-
ically. To do this, let us first take the average in both mem-
bers of equation (3) and get (assuming that in the N → ∞
limit the random fluctuations cancel according 2.3 (see
however [16,20,22])):

w(t + τ) − w(t) = aw(t) − c(w., t)w(t). (6)
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Equation (6) reduces in the continuum limit to a differen-
tial equation of the form equation (1). Therefore, at the
aggregate level, the system described by the equation (3)
represents the same system as equation (1) (with the iden-
tifications A = a/τ and Bw = c(w., t)/τ)). However, the
“microscopic representation” equation (3) allows one to
uncover properties that would be impossible to guess from
contemplating equation (1). Introducing the new variable

xi(t) = wi(t)/w(t) (7)

and applying the chain rule for differentials dxi = xi(t +
τ)−xi(t), dwi = wi(t+τ)−wi(t) and dw = w(t+τ)−w(t):

dxi(t) =
dwi

w(t)
− wi(t)

w(t)
dw

w
· (8)

Equation (3) becomes (considering Eqs. (6) and (7))

dxi(t) = ri(t)xi(t) + a − c(w., t)xi(t) − xi(t)[a − c(w., t)].
(9)

At this stage a very crucial cancellation takes place: the
nonlinear, time dependent function c(w., t) that coupled
the equations of the system disappears. Consequently the
system splits into a set of independent linear stochastic
differential equations with constant coefficients.

dxi(t) = [ri(t) − a]xi + a (10)

Note that, so far, we have not assumed that the sys-
tem of wi’s is in a steady state, yet we have been able to
show that the stochastic dynamics of the relative individ-
ual wealths xi reduces to a set of identical decoupled linear
equations equation (10) which are independent on c(w., t).
The combination D/a representing the ratio between the
fluctuations of the speculative income and the additive
socially insured income is the only parameter influencing
the relative wealth dynamics.

In particular, even in the presence of large arbitrary
time variations of c(w., t) and w(t), if a/D is constant,
the relative wealth will eventually reach a time indepen-
dent distribution that we compute analytically in the next
section. The approach of this asymptotic distribution by
the xi’s is governed by the equations equation (10) and
therefore is itself independent of the global non-stationary
dynamics induced by c(w., t) on w(t).

In fact, equation (10) holds for a wider range of models:

wi(t + τ) − wi(t) = ri(t)wi(t)

+ ai

∑
j

bjwj(t) − c(w., t)wi(t) (11)

where ai and bi are arbitrary positive coefficients. This
corresponds to a social security system which assembles a
budget proportional to bj of the wealth of each individual j
and distributes to each individual i a fraction ai of this
budget.

By multiplying each equation (11) (for each i) by bi

and summing, one gets (see however [19,22]):

u(t + τ) − u(t) = au(t) − c(w., t)u(t) (12)

where we used the notation u(t) =
∑

j bjwj(t) and a(t) =∑
j ajbj(t). Now perform the change of variables:

xi(t) = wi(t)/u(t) (13)

and use the differential chain rule

dxi =
dwi

u
− widu

u2
· (14)

From equations (11, 12) and (13) we obtain

dxi = ri(t)xi(t) + a − c(w., t)xi(t) − xi(t)[a − c(w., t)]
(15)

Again the nonlinear time dependent arbitrary function
c(w1, w2, ..., wN , t) that couple the equations of the sys-
tem equation (11) cancels leaving only a set of uncoupled
time independent linear stochastic differential equations
with constant coefficients equation (10).

4 Stable Pareto distribution in GLV

Equation (10) leads to a stationary probability distribu-
tion that can be computed analytically. Note that the
convergence to the stationary distribution of the relative
wealths xi(t) = wi(t)/u(t) is guaranteed by equation (10)
even if the system defined by equation (11) has a very
non-stationary dynamics.

Now compute the stationary distribution correspond-
ing to the generic stochastic differential dynamics:

x(t + τ) − x(t) = ε(t)g(x(t)) + f(x(t)). (16)

We work explicitly with discrete time steps τ to avoid the
ambiguities related to Ito vs. Stratonovich interpretations
of the continuous stochastic differential equations [23,24].
The result equation (24) will then be applied to the par-
ticular case equation (10).

Without loss of generality, we can assume 〈ε(t)〉 = 0
since the non-random part of ε(t) can be absorbed in a
redefinition of f → f + 〈ε(t)〉g.

In order for the noise ε(t) to be relevant as one takes
“the continuum limit” τ → 0 we assume the square
standard deviation:

D = 〈ε(t)2〉 (17)

to be of order τ.
As a consequence, we have to keep terms of order ε(t)2

and thus also occasionally terms of second order in the
differential dx = x(t + τ) − x(t).

For a meaningful “continuum limit”, the function f(x)
is taken to be of order τ while g(x) is of order 1.

In order to find the asymptotic probability distribu-
tion corresponding to the dynamics equation (16) we will
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perform an appropriate change of variables y(t) = y(x(t))
and obtain a Langevin process with constant (unit)
coefficient for the random term:

y(t + τ) − y(t) = ε(t) + j(y(t)). (18)

This yields the (Maxwell-Boltzmann) stationary distribu-
tion [25] which is the exponential of the integral of the
“drift force” j normalized to the “thermal term” D/2:

P (y)dy = exp
[

2
D

∫ y

j(z)dz

]
dy. (19)

The time evolution equation for the new variable y(t) is
obtained from the one for x(t), equation (16), using the
chain differential rule (in order to keep the terms of order
D we expand up to second order in dx):

y(x(t + τ)) − y(x(t)) = dy =
dy

dx
dx + 1/2

d2y

dx2
(dx)2 + etc.

=
dy

dx
[ε(t)g(x(t)) + f(x(t)] +

D

2
g2 d2y

dx2
+ etc. (20)

where etc. on the r.h.s. denotes terms that vanish faster
than τ in the limit τ → 0.

Obviously, in order to bring equation (16) to the form
equation (18) using equation (20), one needs to make the
particular change of variables:

dy =
1
g
dx. (21)

With this change, equation (20) becomes:

y(t + τ) − y(t) = ε(t) +
f(x(y))
g(x(y))

− D

2
dg

dx
· (22)

According to equation (19), this leads to the asymptotic
probability distribution:

P (y)dy=exp
[

2
D

(∫ y(
f(x(z))
g(x(z))

−D

2
dg(x(z))

dx

)
dz

)]
dy.

(23)

P (x) = exp
[

2
D

∫ x f(v)
g2(v)

dv

]
dx

g(x)2
· (24)

In order to find the stationary distribution of
xi(t) = wi(t)/w(t) corresponding to the dynamics
equation (10), all one has to do is to apply equation (24)
to the particular case:

f(x) = a(1 − x)

and

g(x) = x.

Thus according to equation (24):

P (x)dx = exp
[

2
D

∫ x a − v

v2
dv

]
x−2dx.

After performing the integrals one obtains:

P (x)dx = x−1−α exp[−2a/(xD)] (25)

with

α = 1 + 2a/D. (26)

This result has important implications for all systems
such as those described the Sections 1 and 2. In effect,
even during very unstable conditions that lead to non-
stationary global dynamics, ecologies, economies, stock
markets, physiological systems, communication networks,
social systems, continue to be characterized by stable
power laws with time invariant exponents. These dimen-
sionless exponents depend only on ratios such as:

– that between the additive income and the volatility
of the mutiplicative speculative incomes: α = 1 + 2a/D.

– or the ratio between the effective minimal wealth
wmin and the average wealth w:

α =
1

[1 − wmin(t)/w(t)]
·

For instance if L is the average number of dependents
on the average wealth/income owner, then the average
wealth is about L times the minimal wealth (necessary to
keep alive one person). Consequently one predicts [20,21]
α ∼ L

L−1 ∼ 1.5 which is in good agreement with the ex-
perimental data.

Moreover, it can be shown [16–21] that the dynam-
ics equation (11) implies that the scaling exponents of
the market returns distribution dw/w and of the Pareto
Law P (w) are equal. This prediction is borne out by the
data [7,28].
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